Ergodic optimal quadratic control for an affine equation with stochastic and stationary coefficients

نویسندگان

  • Giuseppina Guatteri
  • Federica Masiero
چکیده

We study ergodic quadratic optimal stochastic control problems for an affine state equation with state and control dependent noise and with stochastic coefficients. We assume stationarity of the coefficients and a finite cost condition. We first treat the stationary case and we show that the optimal cost corresponding to this ergodic control problem coincides with the one corresponding to a suitable stationary control problem and we provide a full characterization of the ergodic optimal cost and control.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Infinite Horizon and Ergodic Optimal Quadratic Control for an Affine Equation with Stochastic Coefficients

We study quadratic optimal stochastic control problems with control dependent noise state equation perturbed by an affine term and with stochastic coefficients. Both infinite horizon case and ergodic case are treated. To this purpose we introduce a Backward Stochastic Riccati Equation and a dual backward stochastic equation, both considered in the whole time line. Besides some stabilizability c...

متن کامل

A New Near Optimal High Gain Controller For The Non-Minimum Phase Affine Nonlinear Systems

In this paper, a new analytical method to find a near-optimal high gain controller for the non-minimum phase affine nonlinear systems is introduced. This controller is derived based on the closed form solution of the Hamilton-Jacobi-Bellman (HJB) equation associated with the cheap control problem. This methodology employs an algebraic equation with parametric coefficients for the systems with s...

متن کامل

Stationary Hamilton--Jacobi Equations in Hilbert Spaces and Applications to a Stochastic Optimal Control Problem

We study an infinite horizon stochastic control problem associated with a class of stochastic reaction-diffusion systems with coefficients having polynomial growth. The hamiltonian is assumed to be only locally Lipschitz continuous so that the quadratic case can be covered. We prove that the value function V corresponding to the control problem is given by the solution of the stationary Hamilto...

متن کامل

Ergodic Control of Stochastic Navier-stokes Equation with Lévy Noise

In this work we consider the controlled stochastic Navier-Stokes equations perturbed by Lévy noise in a two dimensional bounded domain and a semimartingale formulation is used to characterize the probability law defining the space-time statistical solution. The existence and uniqueness of invariant measures or stationary measures is examined under suitable assumptions on the noise coefficient. ...

متن کامل

Invariant Manifolds for Stochastic Models in Fluid Dynamics

This paper is a survey of recent results on the dynamics of Stochastic Burgers equation (SBE) and two-dimensional Stochastic Navier–Stokes Equations (SNSE) driven by affine linear noise. Both classes of stochastic partial differential equations are commonly used in modeling fluid dynamics phenomena. For both the SBE and the SNSE, we establish the local stable manifold theorem for hyperbolic sta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Systems & Control Letters

دوره 58  شماره 

صفحات  -

تاریخ انتشار 2009